Fine Pixel CCD R&D in Japan

Yasuhiro Sugimoto KEK 19 Aug. 2005 @Snowmass05

Contents

- Introduction
- Simulation study
 - Background rejection by cluster shape
 - Electric field and Lorentz angle in epi-layer
- Status and outlook of sensor R&D

Introduction

- FPCCD Vertex Detector
 - Accumulate hit signals for one train and read out between trains → Completely free from EMI
 - Fine pixel of ~5μm (x20 more pixels than "standard" pixels) to keep low pixel occupancy
 - Fully depleted epitaxial layer to minimize the number of hit pixels due to charge spread by diffusion
 - Two layers in proximity make a doublet (super layer) to minimize the wrong-tracking probability due to multiple scattering
 - Tracking capability with single layer using cluster shape can help background rejection
 - Three doublets (6 CCD layers) make the detector
 - Multi-port readout with moderate (~15MHz) speed
 - Operation at low temperature to keep dark current negligible (r.o. cycle=200ms)

Baseline design for GLD

Simulation study: Background rejection by cluster shape

- Disadvantage of Fine Pixel option:
 - High hit density: ~40/mm²/train at R=20mm, B=3T, nominal option at 500 GeV
 - Background hit can cause wrong-track finding
 - We need background rejection

 WZ_{Sig} , $W\phi_{Sig}$: Expected width

- R=20mm
- Cut at dW=10μm

- Detector full simulation
 - $N_z > Z(cm)x1.2, N_x < 3$

Efficiency for pair b.g.

Efficiency for 1 GeV/c muon

T. Nagamine

Lorentz angle in epi-layer

- Lorentz (Hall) angle in depletedlayer
 - tanθ=μ_nB
 μ_n: electron mobility
 - Carrier velocity saturates at high E field:
 - $\mu_n = 0.07 \text{ m}^2/\text{Vs}$ @T=300K, E=1x10⁴V/cm
 - $\mu_n = 0.045 \text{ m}^2/\text{Vs}$ @T=300K, E=2x10⁴V/cm
 - Small angle can be cancelled by tilting the wafer
- May not be a serious problem
 - Number of hit pixels does not increase so much

	B=3T	B=5T
E=1x10 ⁴ V/cm	θ=12deg	θ=19deg
E=2x10 ⁴ V/cm	θ=7.7deg	θ=13deg

Lorentz angle

- Calculation of E-field in epi-layer
 - Tools
 - FEMLAB (COMSOL in Japan) 3.1
 - Solve Poisson equation by finite element analysis (FEA)
 - Parameters
 - Material is assumed fully depleted (No free charge)
 - n-layer: N_D=1x10¹⁶/cm³=1.6x10³ C/m³
 - Epi-layer: $N_A = 1 \times 10^{13} / \text{cm}^3 = -1.6 \text{ C/m}^3$
 - $V_G=4 V$
 - $t_{SiO2} = 100 \text{ nm}$
 - $t_n=1 \mu m$
 - t_{epi}=15 μm

Result of E-field calculation

Result of E-field calculation – Potential

Lorentz angle

- Result of E-field calculation Summary
 - Almost constant E-field of ~10⁴V/cm in epi-layer can be achieved
 - E-field in epi-layer depends on gate voltage
 - Higher (positive) gate voltage gives higher E-field
 - Positive gate voltage should be applied during train crossing in order to get saturated carrier velocity and less Lorentz angle (Inverted (MPP) mode can be maintained for ~1ms at low temperature)
 - The Lorentz angle of 12 degrees is expected at B=3T

Status of sensor R&D

- Fully depleted CCD for astrophysics by Hamamatsu
 - 24 μm, 12 μm pixel size:
 - Available now
 - We will test them in this FY
 - 5 9 μm pixel size:
 - Under development
 - Will be available in 0.5 1 year
- Custom fully depleted FPCCD for VTX
 - High speed (~15MHz)
 - Multi-port readout
 - We wish to start in 2006

Summary

- We propose FPCCD option for the ILC vertex detector
 - Fully depleted fine pixel (~5μm) CCD
 - Accumulate hits of 1 train and read out between trains
- FPCCD has several advantages
 - Completely free from EMI
 - Moderate readout speed
 - CCD is established technology
 - No heat source in the image area
- Disadvantage of FPCCD high background hit density can be overcome by background rejection using hit cluster shape
- Estimated Lorentz angle in the depleted layer is small (~12 degrees) at 3T
- Fully depleted CCD is already available
- FPCCD for astrophysics is being developed by Hamamatsu
- We would like to start development of custom FPCCD for ILC from 2006
- Wafer thinning is essential for FPCCD option. We need R&D